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Abstract

Using the so-called pinball loss for estimating conditional quantiles is a well-
known tool in both statistics and machine learning. So far, however, only little
work has been done to quantify the efficiency of this tool for non-parametric (mod-
ified) empirical risk minimization approaches. The goal of this work is to fill
this gap by establishing inequalities that describe how close approximate pinball
risk minimizers are to the corresponding conditional quantile. These inequalities,
which hold under mild assumptions on the data-generating distribution, are then
used to establish so-called variance bounds, which recently turned out to play an
important role in the statistical analysis of (modified) empirical risk minimization
approaches. To illustrate the use of our new inequalities, we then utilize them to
establish an oracle inequality for support vector machines that use the pinball loss.
Here, it turns out that we obtain learning rates, which are optimal in a min-max
sense under some standard assumptions on the regularity of the conditional quan-
tile function.

1 Introduction

Let P be a distribution onX × Y , whereX is an arbitrary set equipped with aσ-
algebra, andY ⊂ R is closed. The goal of quantile regression is to estimate the
conditional quantile, i.e., the set valued function

F ∗τ,P(x) :=
{
t ∈ R : P

(
(−∞, t] |x

)
≥ τ andP

(
[t,∞) |x

)
≥ 1− τ

}
, x ∈ X,
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whereτ ∈ (0, 1) is a fixed constant specifying the desired quantile level andP( · |x),
x ∈ X, is the (regular) conditional probability ofP. Let us assume for a moment1

thatF ∗τ,P(x) consists of singletons, i.e., there exists a functionf∗τ,P : X → R, called
the conditionalτ -quantile function, such thatF ∗τ,P(x) = {f∗τ,P(x)}, x ∈ X. Then
one approach to estimate the conditionalτ -quantile function is based on the so-called
τ -pinball lossL : Y ×R→ [0,∞), which is defined by

L(y, t) :=

{
(1− τ)(t− y) if y < t

τ(y − t) if y ≥ t .

With the help of this loss function we define theL-risk of a (measurable) function
f : X → R by

RL,P(f) := E(x,y)∼PL(y, f(x)) =
∫

X×Y

L(y, f(x)) dP(x, y) .

Now recall thatf∗τ,P is up toPX -zero sets theonly function that minimizes theL-risk,
i.e.RL,P(f∗τ,P) = infRL,P(f) =: R∗L,P, where the infimum is taken over all measur-
able functionsf : X → R. Based on this observation several estimators minimizing
a (modified) empiricalL-risk were proposed (see [7] for a survey on both paramet-
ric and non-parametric methods) for situations whereP is unknown, but i.i.d. samples
D := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n drawn fromP are given.

Empirical methods estimating quantile functions with the help of the pinball loss
typically obtain functionsfD for whichRL,P(fD) is close toR∗L,P with high probabil-
ity. In general, however, this only implies thatfD is close tof∗τ,P in a very weak sense
(see [13, Remark 3.18]), but recently, [15] establishedself-calibration inequalitiesof
the form

‖f − f∗τ,P‖Lr(PX) ≤ cP

√
RL,P(f)−R∗L,P , (1)

which holds under mild assumptions onP, which are described by the parameter
r ∈ (0, 1]. The first goal of this paper is to generalize and improve these inequali-
ties. Moreover, we will use these new self-calibration inequalities to establishvariance
boundsfor the pinball risk, which in turn are known to improve the statistical analysis
of empirical risk minimization approaches.

The second goal of this paper is to apply the self-calibration inequalities and the
variance bounds to support vector machines (SVMs) for quantile regression. Recall,
that [12, 6, 18] proposed an SVM that finds a solutionfD,λ ∈ H of

arg min
f∈H

λ‖f‖2H +
1
n

n∑
i=1

L(yi, f(xi)) , (2)

whereλ > 0 is a regularization parameter andH is a reproducing kernel Hilbert space
(RKHS) overX. In [6, 18] it was worked out how to solve this optimization problem
with numerical techniques, which are nowadays standard in the machine learning lit-
erature. Moreover, [18] also provided an exhaustive empirical study which shows the

1Most of our main results later in this work do not require this assumption, but here in the introduction it
makes the exposition more transparent.
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excellent performance of this SVM approach. We have recently established an oracle
inequality for these SVMs in [15], which were based on (1) and the resulting variance
bounds. In this paper, we improve this oracle inequality with the help of the new self-
calibration inequalities and variance bounds. It turns out that the resulting learning
rates are substantially faster than those obtained in [15]. Finally, we briefly discuss an
adaptive parameter selection strategy, which is based on a training/validation approach.

The rest of this paper is organized as follows: In Section 2, we present both our
new self-calibration inequality and the new variance bound. We also introduce the
assumptions onP that lead to these inequalities, and discuss how these inequalities
improve our former results in [15]. In Section 3, we then use these new inequalities to
establish an oracle inequality for the SVM approach above. In addition, we discuss the
resulting learning rates and how these can be achieved in an adaptive way. Finally, all
proofs are contained in Section 4.

2 Main results

In the following, X is an arbitrary, non-empty set equipped with aσ-algebra, and
Y ⊂ R is a closed non-empty set. Given a distributionP onX × Y we further assume
throughout this paper that theσ-algebra onX is complete with respect to the marginal
distributionPX of P, i.e., every subset of aPX -zero set is contained in theσ-algebra.
Since the latter can always be ensured by increasing the originalσ-algebra in a suitable
manner we note that this is not a restriction at all.

In order to formulate the main results of this section, we need to introduce some
assumptions on the data-generating distributionP. To this end, letQ be a distribution
onR andτ ∈ (0, 1). Then theτ -quantile ofQ is the set

F ∗τ (Q) :=
{
t ∈ R : Q

(
(−∞, t]

)
≥ τ andQ

(
[t,∞)

)
≥ 1− τ

}
.

It is not hard to show thatF ∗τ (Q) is a bounded and closed interval. We write

t∗min(Q) := minF ∗τ (Q)
t∗max(Q) := max F ∗τ (Q) ,

and we usually omit the argumentQ if the considered distribution is clearly determined
from the context. We further need the following notion.

Definition 2.1 A distributionQ onR with supportsuppQ ⊂ [−1, 1] is said to have
a τ -quantile of typeq ∈ (1,∞), if there exist constantsαQ ∈ (0, 2] andbQ > 0 such
that, for all s ∈ [0, αQ], we have

Q
(
(t∗min − s, t∗min)

)
≥ bQ sq−1 (3)

Q
(
(t∗max, t

∗
max + s)

)
≥ bQ sq−1 . (4)

Moreover, we say thatQ has aτ -quantile of typeq = 1, if both Q({t∗min}) > 0 and
Q({t∗max}) > 0. In this case, we defineαQ := 2 and

bQ := min
{
Q({t∗min}),Q({t∗max})

}
.
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Finally, in both cases we define

γQ := bQαq−1
Q . (5)

Leading examples for distributions havingτ -quantiles of typeq = 2 for τ ∈ (0, 1)
are distributionsQ with a Lebesgue densityhQ(x) ≥ bQ > 0 for all x ∈ supp Q.
Moreover, distributions of typeq 6= 2 can be realized by making appropriate assump-
tions on the behavior ofhQ around the quantile of interest. Finally, note that these
distributions arenot the only distributions of typeq.

As outlined in the introduction, we are not interested in a single distributionQ on
R but in distributionsP on X × R. The following definition extends the previous
definition to such probability measures.

Definition 2.2 Letp ∈ (0,∞] andq ∈ [1,∞). A distributionP onX × [−1, 1] is said
to have aτ -quantile ofp-average typeq if for PX -almost allx ∈ X the conditional
distributionP( · |x) has aτ -quantile of typeq, and the functionγ : X → [0,∞] defined
by

γ(x) := γP( · |x) , x ∈ X,

whereγP( · |x) is given by (5), satisfiesγ−1 ∈ Lp(PX).

In the following theorem, which establishes the announced self-calibration inequal-
ity, we need the distancedist(t, A) between an elementt ∈ R and a subsetA ⊂ R,
i.e., the quantity

dist(t, A) := inf
s∈A

|t− s| .

Moreover,dist(f, F ∗τ,P) denotes the functionx 7→ dist(f(x), F ∗τ,P(x)). With these
preparations the self-calibration inequality reads as follows.

Theorem 2.3 LetL be theτ -pinball loss,p ∈ (0,∞] andq ∈ [1,∞) be real numbers,
andr := pq

p+1 . Moreover, letP be a distribution onX × [−1, 1] that has aτ -quantile
of p-average typeq ∈ [1,∞). Then for allf : X → [−1, 1] we have

‖dist(f, F ∗τ,P)‖Lr(PX) ≤ 21−1/qq1/q‖γ−1‖1/q
Lp(PX)

(
RL,P(f)−R∗L,P

)1/q
.

Let us briefly compare the self-calibration inequalities above with the ones we es-
tablished in [15]. To this end, we can solely focus on the caseq = 2, since this was the
only case considered in [15]. For the same reason, we can restrict our considerations
to distributionsP that have a unique conditionalτ -quantilef∗τ,P(x) for PX -almost all
x ∈ X. Then Theorem 2.3 yields

‖f − f∗τ,P‖Lr(PX) ≤ 2‖γ−1‖1/2
Lp(PX)

(
RL,P(f)−R∗L,P

)1/2

for r := 2p
p+1 . On the other hand, it was shown in [15] that

‖f − f∗τ,P‖Lr/2(PX) ≤
√

2‖γ−1‖1/2
Lp(PX)

(
RL,P(f)−R∗L,P

)1/2
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under theadditionalassumption that the conditional widthsαP( · |x) considered in Def-
inition 2.1 areindependentfrom x. This shows that our new self-calibration inequality
is more general and, modulo the constant

√
2, also stronger.

It is well-known that self-calibration inequalities for Lipschitz continuous losses
lead to variance bounds, which in turn are important for the statistical analysis of em-
pirical risk minimization approaches, see [8, 9, 10, 11, 1, 2]. For the pinball loss, the
self-calibration inequality established above leads to the following variance bound.

Theorem 2.4 LetL be theτ -pinball loss,p ∈ (0,∞] andq ∈ [1,∞) be real numbers,
and

ϑ := min
{2

q
,

p

p + 1

}
.

Moreover, letP be a distribution onX × [−1, 1] that has aτ -quantile ofp-average
typeq. Then for allf : X → [−1, 1] there exists a functionf∗τ,P : X → [−1, 1] with
f∗τ,P(x) ∈ F ∗τ,P(x) for PX -almost allx ∈ X such that

EP

(
L ◦ f − L ◦ f∗τ,P

)2 ≤ 22−ϑqϑ‖γ−1‖ϑ
Lp(PX)

(
RL,P(f)−R∗L,P

)ϑ
,

where we used the shorthandL ◦ f for the function(x, y) 7→ L(y, f(x)).

Again, it is straightforward to show that the variance bound above is both more
general and stronger than the variance bound we established in [15]. We omit the
details for the sake of brevity.

3 An Application to Support Vector Machines

The goal of this section is to establish an oracle inequality for the SVM defined in (2).
The use of this oracle inequality is then illustrated by some learning rates we derive
from it.

Let us begin by recalling some RKHS theory (see, e.g., [16, Chapter 4] for a more
detailed account). To this end, letk : X × X → R be a measurable kernel, i.e., a
measurable function that is symmetric and positive definite. Then the associated RKHS
H consists of measurable functions. Let us additionally assume thatk is bounded with
‖k‖∞ := supx∈X

√
k(x, x) ≤ 1, which in turn implies thatH consists of bounded

functions and‖f‖∞ ≤ ‖f‖H for all f ∈ H.
Suppose now that we have a distributionP onX × Y . To describe the approxima-

tion error of SVMs we need theapproximation error function

A(λ) := inf
f∈H

λ‖f‖2H +RL,P(f)−R∗L,P , λ > 0 ,

whereL is theτ -pinball loss. Recall that [16, Lemma 5.15 and Theorem 5.31], see also
[17], showedlimλ→0 A(λ) = 0, if the RKHSH is dense inL1(PX), and the speed of
this converge describes how wellH approximates the BayesL-risk. In particular, [16,
Corollary 5.18] shows thatA(λ) ≤ cλ for some constantc > 0 and allλ > 0 if and
only if there exists anf ∈ H such thatf(x) ∈ F ∗τ,P(x) for PX -almost allx ∈ X.
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In order to describe the capacity of the RKHSH we further need the integral oper-
atorTk : L2(PX) → L2(PX) that is defined by

Tkf( · ) :=
∫

X

k(x, · )f(x) dPX(x) , f ∈ L2(PX).

It is well-known that this integral operator is self-adjoint and nuclear, see, e.g., [16,
Theorem 4.27]. Consequently, it has at most countably many eigenvalues (including
geometric multiplicities), which are all non-negative, and which, as a sequence, are
summable. In the following we order these eigenvaluesλi(Tk). Moreover, if we only
have finitely many eigenvalues we extend this finite sequence by zeros. As a result,
we always can deal with a decreasing, non-negative sequenceλ1(Tk) ≥ λ2(Tk) ≥ . . .
which satisfies

∞∑
i=1

λi(Tk) < ∞ .

The finiteness of this sum can already be used to establish oracle inequalities, see
e.g. [16, Theorem 7.22], but in the following we assume that the eigenvalues con-
verge even faster to zero, sincea) this case is satisfied for many RKHSs andb) it leads
to better oracle inequalities. To be more precise, we assume that there exist constants
a ≥ 1 and% ∈ (0, 1) such that

λi(Tk) ≤ a i−1/% , i ≥ 1. (6)

One can show that this eigenvalue assumption is equivalent to an entropy number as-
sumption on the inclusionid : H → L2(PX). Namely, (6) is satisfied if and only if we
have

ei(id : H → L2(PX)) ≤
√

ai−1/(2%) , i ≥ 1 ,

whereei(S) denotes thei-th (dyadic) entropy numbers of a bounded linear operator
S. We refer to [4] for information regarding entropy numbers and to [14] for a brief
argument for this equivalence.

Finally, we also need the clipping operation, which, for fixedM > 0, is defined by

at :=


−M if t < −M

t if t ∈ [−M,M ]
M if t > M

(7)

for all t ∈ R. In the following, we assume thatM := 1 if not stated otherwise. With
the help of these notations we can now formulate the following oracle inequality which
is just a particular case of a more general inequality established in [16, Theorem 7.23].

Theorem 3.1 Let L be theτ -pinball loss andP be a distribution onX × [−1, 1] for
which there exists a functionf∗τ,P : X → R with f∗τ,P(x) ∈ F ∗τ,P(x) for PX -almost all
x ∈ X. We further assume that there exist constantsV ≥ 22−ϑ andϑ ∈ [0, 1] such
that

EP

(
L ◦ f − L ◦ f∗τ,P

)2 ≤ V
(
RL,P(f)−R∗L,P

)ϑ
(8)
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for all f : X → [−1, 1]. Moreover, letH be a RKHS overX with bounded measurable
kernel satisfying‖k‖∞ ≤ 1. In addition, assume that (6) is satisfied. Then there exists
a constantK depending only on%, V , and% such that for allς ≥ 1, n ≥ 1, andλ > 0
we have with probability not less than1− 3e−ς that

RL,P(
a
fD,λ)−R∗L,P ≤ 9A(λ) + 30

√
A(λ)

λ

ς

n
+ K

( a%

λ%n

) 1
2−%−ϑ+ϑ%

+3
(72V ς

n

) 1
2−ϑ

.

Let us now illustrate how this oracle inequality can be used to establish learning
rates for estimating conditional quantiles. To this end, we assume that there exist con-
stantsc > 0 andβ ∈ (0, 1] such thatA(λ) ≤ cλβ for all λ > 0. Then it is easy to show,

see [16, Lemma A.1.7], thatRL,P(
a
fD,λn

) converges toR∗L,P with raten−γ , where

γ := min
{ β

β(2− ϑ + %ϑ− %) + %
,

2β

β + 1

}
, (9)

provided that we have chosenλ by λn = n−γ/β . Note that this choice ofλ yields the
best learning rates from Theorem 3.1. Unfortunately, however, this choice requires to
know the usually unknown parametersβ, ϑ, and%. On the other hand, [16, Theorem
7.24] shows that this rate can also be achieved by selectingλ in a data-dependent way
with the help of a validation data set. In other words, the learning rates above can be
achieved without knowing the existence of the above parameters nor their particular
values.

Let us now consider how these learning rates in terms of risks translate into rates
for

‖
a
fD,λn

− f∗τ,P‖Lr(PX) .

To this end, we assume thatP has aτ -quantile ofp-average typeq, where we addi-
tionally assume for the sake of simplicity thatr := pq

p+1 ≤ 2. Note that the latter is
satisfied for allp if q ≤ 2, i.e., if all conditional distributions are concentrated around
the quantile as least as much as the uniform distribution. We refer to the discussion
following Definition 2.1 for a precise statement. Moreover, we additionally assume
that the conditional quantilesF ∗τ,P(x) are singletons forPX -almost allx ∈ X. Then
Theorem 2.4 provides a variance bound of the form (8) forϑ := p/(p + 1), and hence
γ defined in (9) becomes

γ = min
{ β(p + 1)

β(2 + p− %) + %(p + 1)
,

2β

β + 1

}
By Theorem 2.3 we consequently see that‖afD,λn − f∗τ,P‖Lr(PX) converges with rate

n−γ/q to zero, wherer := pq/(p + 1). To illustrate this learning rate, let us assume
that we have picked a RKHSH with f∗τ,P ∈ H. Then we haveβ = 1, and hence it is
easy to check that the latter learning rate reduces to

n−
p+1

q(2+p+%p) .

7



For the sake of simplicity, let us further assume that the conditional distributions do not
change too much in the sense thatp = ∞. Then we haver = q and the learning rate

for ‖afD,λn
− f∗τ,P‖Lq(PX) becomes

n−
1

q(1+%) .

In other words, ∫
X

∣∣afD,λn
− f∗τ,P

∣∣q dPX (10)

converges with raten−1/(1+%). The latter shows that the value ofq does not change the
learning rate for (10), but only the exponent in (10). Now note that by our assumption
onP and the definition of the clipping operation we have

‖
a
fD,λn − f∗τ,P‖∞ ≤ 2 ,

and consequently small values ofq emphasize the discrepancy of
a
fD,λn

to f∗τ,P more
than large values ofq do. In this sense, a stronger average concentration around the
quantile of interest is helpful for the learning process.

Let us now have a closer look to the special caseq = 2, which is probably the most
interesting case for applications. Then we have the learning raten−1/(2(1+%)) for

‖
a
fD,λn

− f∗τ,P‖L2(PX) .

Now recall that the conditional median equals the conditional mean forsymmetriccon-
ditional distributionsP( · |x). Moreover, if H is a Sobolev spaceWm(X), where
m > d/2 denotes the smoothness index andX is the unit ball inRd, thenH con-
sists of continuous functions, and [5] shows thatH satisfies (6) for% := d/(2m) and
PX being the uniform distribution onX. Consequently, we we see that in this case the
latter convergence rate is optimal in a min-max sense. Finally, recall that in the case
β = 1, q = 2, andp = ∞ discussed so far, the results derived by [15] only yielded a
learning rate ofn−1/(3(1+%)) for

‖
a
fD,λn

− f∗τ,P‖L1(PX) .

In other words, the earlier rates from [15] are not only worse by a factor of3/2 in the
exponent but also stated in terms of the weakerL1(PX)-norm. In addition, [15] only
considered the caseq = 2, and hence we see that our new results are also more general.

4 Proofs

Let us first recall some notions from [13] and [16, Chapter 3] which investigated sur-
rogate losses in general and the question of how approximate risk minimizers approxi-
mate exact risk minimizers in particular. To this end, letL : X × Y ×R→ [0,∞) be

8



a measurable function, which we call a loss in the following. For a distributionP and
anf : X → R theL-risk is then defined by

RL,P(f) :=
∫

X×Y

L(x, y, f(x)) dP(x, y) ,

and, as usual, the BayesL-risk, is denoted byR∗L,P := infRL,P(f), where the infi-
mum is taken over all measurable functionsf : X → R. In addition, given a distribu-
tion Q onY the innerL-riskswere defined by

CL,Q,x(t) :=
∫

Y

L(x, y, t) dQ(y) , x ∈ X, t ∈ R,

and theminimal innerL-riskswere denoted byC∗L,Q,x := inf CL,Q,x(t), x ∈ X, where
the infimum is taken over allt ∈ R. Moreover, following [13] we usually omit the
indexesx or Q if L is independent ofx or y, respectively. Obviously, we have

RL,P(f) =
∫

X

CL,P( · |x),x

(
f(x)

)
dPX(x) , (11)

and [13, Theorem 3.2] further shows thatx 7→ C∗L,P( · |x),x is measurable if theσ-
algebra onX is complete. In this case, it was also shown that the intuitive formula

R∗L,P =
∫

X

C∗L,P( · |x),x dPX(x)

holds, i.e. the BayesL-risk is obtained by minimizing the inner risks and subsequently
integrating with respect to the marginal distributionPX . Based on this observation the
basic idea in [13] is to consider both steps separately. In particular, it turned out that
the sets ofε-approximate minimizers

ML,Q,x(ε) :=
{
t ∈ R : CL,Q,x(t) < C∗L,Q,x + ε

}
, ε ∈ [0,∞] ,

and the set ofexact minimizers

ML,Q,x(0+) :=
⋂
ε>0

ML,Q,x(ε)

play a crucial role. As in [13] we again omit the subscriptsx andQ in these definitions
if L happens to be independent ofx or y, respectively.

Let us now compute the excess inner risks and the set of exact minimizers for the
pinball loss. To this end recall (see, e.g., [3, Theorem 23.8]) that given a distributionQ
onR and anon-negativemeasurable functiong : X → [0,∞) we have∫

R

g dQ =
∫ ∞

0

Q(g ≥ s) ds . (12)

With the help of these preparations we can now show the following preliminary result,
which is a generalization of [16, Proposition 3.9].
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Proposition 4.1 LetL be theτ -pinball loss andQ be a distribution onR with C∗L,Q <
∞. Then there existq+, q− ∈ [0, 1] with q+ + q− = Q([t∗min, t∗max]), and for all t ≥ 0
we have

CL,Q(t∗max + t)− C∗L,Q = tq+ +
∫ t

0

Q
(
(t∗max, t

∗
max + s)

)
ds , (13)

CL,Q(t∗min − t)− C∗L,Q = tq− +
∫ t

0

Q
(
(t∗min − s, t∗min)

)
ds . (14)

In addition, we haveML,Q(0+) = F ∗τ (Q).

Proof: Obviously, we haveQ((−∞, t∗max]) + Q([t∗max,∞)) = 1 + Q({t∗max}), and
hence we obtainτ ≤ Q((−∞, t∗max]) ≤ τ + Q({t∗max}). In other words, there exists a
q+ ∈ [0, 1] satisfying0 ≤ q+ ≤ Q({t∗max}) and

Q((−∞, t∗max]) = τ + q+ . (15)

Let us consider the distributioñQ defined byQ̃(A) := Q(t∗max +A) for all measurable
A ⊂ R. Then it is not hard to see thatt∗max(Q̃) = 0. Moreover, we obviously have
CL,Q(t∗max + t) = CL,Q̃(t) for all t ∈ R. Let us now compute the inner risks ofL with

respect tõQ. To this end, we fix at ≥ 0. Then we have∫
y<t

(y − t) dQ̃(y) =
∫

y<0

y dQ̃(y)− tQ̃((−∞, t)) +
∫

0≤y<t

y dQ̃(y)

and ∫
y≥t

(y − t) dQ̃(y) =
∫

y≥0

y dQ̃(y)− tQ̃([t,∞))−
∫

0≤y<t

y dQ̃(y)

and hence we obtain

CQ̃,L(t) = (τ − 1)
∫

y<t

(y − t) dQ̃(y) + τ

∫
y≥t

(y − t) dQ̃(y)

= CQ̃,L(0)− τt + tQ̃((−∞, 0)) + tQ̃([0, t))−
∫

0≤y<t

y dQ̃(y) .

Moreover, using (12) we find

tQ̃([0, t))−
∫

0≤y<t

y dQ̃(y) =
∫ t

0

Q̃([0, t))ds−
∫ t

0

Q̃([s, t)) ds

= tQ̃({0}) +
∫ t

0

Q̃((0, s))ds ,

and since (15) implies̃Q((−∞, 0))+Q̃({0}) = Q̃((−∞, 0]) = τ +q+ we thus obtain
(13). Now (14) can be derived from (13) by considering the pinball loss with parameter
1− τ and the distribution̄Q defined byQ̄(A) := Q(−t∗min − A), A ⊂ R measurable.
This further yields aq− satisfying0 ≤ q− ≤ Q({t∗min}) andQ([t∗min,∞) = 1−τ+q−.
By (15) we then findq++q− = Q([t∗min, t∗max]). The final assertion now easily follows
from the formulas for the excess risks, and is, in addition, also well-known.
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For the proof of Theorem 2.3 we need to recall a few more concepts from [13] or
[16, Chapter 3]. To this end, let us now assume that our loss is independent ofx, i.e. we
consider a measurable functionL : Y ×R→ [0,∞]. We write

Qmin(L) :=
{
Q : Q is a distribution onR such thatML,Q(0+) 6= ∅

}
,

i.e.Qmin(L) contains the distributions onRwhose innerL-risks have at least one exact
minimizer. Furthermore, note that this definition immediately yieldsC∗L,Q < ∞ for all
Q ∈ Qmin(L). Following [13] we now define theself-calibration lossof L by

L̆(Q, t) := inf
t∗∈ML,Q(0+)

|t− t∗| , Q ∈ Qmin(L), t ∈ R . (16)

This loss is atemplateloss in the sense of [13] or [16, Chapter 3], i.e., for a given
distributionP on X × Y , whereX has a completeσ-algebra andP( · |x) ∈ Qmin(L)
for PX -almost allx ∈ X, theP-instance

L̆P(x, t) := L̆(P( · |x), t) , x ∈ X, t ∈ R,

is measurable, and hence a loss. [13] or [16, Chapter 3] extended the definition of inner
risks to the self-calibration loss by settingCL̆,Q(t) := L̆(Q, t), and based on this, the
minimal inner risks and their (approximate) minimizers were defined in the obvious
ways. Moreover, theself-calibration functionwas defined by

δmax,L̆,L(ε, Q) := dist(t,ML,Q(0+)) := inf
t∈R: L̆(Q,t)≥ε

CL,Q(t)− C∗L,Q .

As shown in [13] or [16, Chapter 3.9] the self-calibration function satisfies

δmax,L̆,L

(
dist(t,ML,Q(0+)),Q

)
≤ CL,Q(t)− C∗L,Q , t ∈ R, (17)

i.e. it measures how well anε-approximateL-risk minimizert approximate the set of
exactL-risk minimizers.

Our next goal is to estimate the self-calibration function for the pinball loss. To this
end we need the following simple technical lemma.

Lemma 4.2 For α ∈ [0, 2] andq ∈ [1,∞) consider the functionδ : [0, 2] → [0,∞)
defined by

δ(ε) :=

{
εq if ε ∈ [0, α]
qαq−1ε− αq(q − 1) if ε ∈ [α, 2] .

Then for allε ∈ [0, 2] we have

δ(ε) ≥
(α

2

)q−1

εq .

Proof: Sinceα ≤ 2 andq ≥ 1 we easily see by the definition ofδ that the assertion is
true forε ∈ [0, α]. Now consider the functionh : [0, 2] → R defined by

h(ε) := qαq−1ε− αq(q − 1)−
(α

2

)q−1

εq

11



for all ε ∈ [0, 2]. Obviously, it suffices to show thath(ε) ≥ 0 for all ε ∈ [α, 2]. To
show the latter we first check that

h′(ε) = qαq−1 − q
(α

2

)q−1

εq−1,

and hence we haveh′(ε) ≥ 0 for all ε ∈ [0, 2]. From this,α ≤ 2, and

h(α) = αq −
(α

2

)q−1

αq = αq

(
1−

(α

2

)q−1
)
≥ 0

we then obtain the assertion.

Lemma 4.3 Let L be theτ -pinball loss andQ be a distribution onR with suppQ ⊂
[−1, 1] that has aτ -quantile of typeq ∈ [1,∞). Moreover, letαQ ∈ (0, 2] andbQ > 0
denote the corresponding constants. Then for allε ∈ [0, 2] we have

δmax,L̆,L(ε, Q) ≥ q−1bQ

(αQ

2

)q−1

εq .

Proof: Obviously, the mapt 7→ CL,Q(t)− C∗L,Q is convex, and thus it is decreasing on
(−∞, t∗min] and increasing on[t∗max,∞). SinceML,Q(0+) = F ∗τ (Q) is an interval,
we hence find

ML̆,Q(ε) = {t ∈ R : L̆(Q, t) < ε} = (t∗min − ε, t∗max + ε)

for all ε > 0. This gives

δmax,L̆,L(ε, Q) = inf
t6∈ML̆,Q(ε)

CL,Q(t)− C∗L,Q

= min
{
CL,Q(t∗min − ε), CL,Q(t∗max + ε)

}
− C∗L,Q . (18)

Let us first consider the caseq ∈ (1,∞). For t ∈ [0, αQ], Equations (13) and (4) then
yield

CL,Q(t∗max + t)− C∗L,Q = tq+ +
∫ t

0

Q
(
(t∗max, t

∗
max + s)

)
ds

≥ bQ

∫ t

0

sq−1 ds

= q−1bQtq .

In addition, forq = 1 this inequality follows in a similar fashion from (13), and an
analogue estimate forCL,Q(t∗min − t) − C∗L,Q can be shown by using (14) and (3).
Having established these inequalities we then conclude by (18) that

δmax,L̆,L(ε, Q) ≥ q−1bQεq

for all ε ∈ [0, αQ]. Now the assertion follows from Lemma 4.2.

12



In the following, we say that a distributionP on X × Y is of typeQ, whereQ
is some set of distributions onR, if P( · |x) ∈ Q for PX -almost allx ∈ X. Now
we can formulate our last auxiliary result, which establishes a general self-calibration
inequality.

Proposition 4.4 Let M > 0 andL : R × R → [0,∞) be a convex loss such that for
everyy ∈ [−M,M ] the functionL(y, · ) : R → [0,∞) has at least on global mini-
mizer that is contained in[−M,M ]. Moreover, letP be a typeQmin(L) distribution
on X × [−M,M ] withR∗L,P < ∞. Assume that there existp ∈ (0,∞], q > 0, and a
functionγ : X → [0,∞] with γ−1 ∈ Lp(PX) and

δmax,L̆P,L(ε, P(·|x), x) ≥ γ(x) εq , ε ∈ [0, 2M ], x ∈ X.

Then for all measurablef : X → [−M,M ] we have(∫
X

(
L̆P(x, f(x))

) pq
p+1 dPX(x)

) p+1
pq

≤ ‖γ−1‖
1
q

Lp(PX)

(
RL,P(f)−R∗L,P

) 1
q

.

Proof: For y ∈ [−M,M ], we denote the set of minimizers ofL(y, · ) : R → [0,∞)
byMy := {t∗ ∈ R : L(y, t∗) = inft∈R L(y, t)}. Note that the convexity ofL implies
thatMy is a closed interval. Moreover, by our assumptions we haveMy∩[−M,M ] 6=
∅, and hence we haveinfMy ≤ M andsupMy ≥ −M . In addition, the convexity of
L shows thatL(y, · ) : R → [0,∞) is increasing on[supMy,∞) and decreasing on
(−∞, infMy]. Hence we have

L(y, at ) ≤ L(y, t) , y ∈ [−M,M ], t ∈ R,

whereat denotes the clipped value oft at±M , see (7). From this it is easy to conclude
that

CL,Q(at ) ≤ CL,Q(t)

for all t ∈ R and all distributionsQ whose support is contained in[−M,M ]. Con-
sequently, we haveML,Q(0+) ∩ [−M,M ] 6= ∅ for all suchQ, which in turn implies
that

L̆(Q, t) ≤ 2M , t ∈ [−M,M ].

Now the assertion follows from (17) and the proof of [13, Proposition 3.19].

Proof of Theorem 2.3:By Lemma 4.3 we obtain a lower bound on the self-calibration
function of the pinball loss. Moreover,P is a typeQmin(L) distribution, since the con-
ditional minimizers, which are the conditionalτ -quantiles, do exist. Now the assertion
follows from Proposition 4.4.

Proof of Theorem 2.4:Let f : X → [−1, 1] be a measurable function andf∗τ,P : X →
[−1, 1] be thePX -almost surely uniquely determined measurable function that satisfies
both

f∗τ,P(x) ∈ F ∗τ,P(x)∣∣f(x)− f∗τ,P(x)
∣∣ = dist

(
f(x), F ∗τ,P(x)

)
13



for PX -almost allx ∈ X. Let us writer := pq
p+1 . We first consider the caser ≤ 2, i.e.,

2
q ≤

p
p+1 . Using the Lipschitz continuity ofL and Theorem 2.3 we then obtain

EP

(
L ◦ f − L ◦ f∗τ,P

)2 ≤ EPX
|f − f∗τ,P|2

≤ ‖f − f∗τ,P‖2−r
∞ EPX

|f − f∗τ,P|r

≤ 22−r/qqr/q‖γ−1‖r/q
Lp(PX)

(
RL,P(f)−R∗L,P

)r/q
.

Sincer
q = p

p+1 = ϑ, we thus obtain the assertion in this case. Let us now consider the
caser > 2. The Lipschitz continuity ofL and Theorem 2.3 then yields

EP

(
L ◦ f − L ◦ f∗τ,P

)2 ≤
(
EP

(
L ◦ f − L ◦ f∗τ,P

)r
)2/r

≤
(
EPX

|f − f∗τ,P|r
)2/r

≤
(
21−1/qq1/q‖γ−1‖1/q

Lp(PX)

(
RL,P(f)−R∗L,P

)1/q
)2

= 22−2/qq2/q‖γ−1‖2/q
Lp(PX)

(
RL,P(f)−R∗L,P

)2/q
.

Since forr > 2 we haveϑ = 2/q we again obtain the assertion.
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